
May, 2004

Advisor Answers

Disabling items in a combo box

VFP 8/7/6

Q: Is it possible to disable some items in a combo box?

A: As with so much in FoxPro, it depends. Specifically, some

RowSourceTypes allow you to disable items while others do not. The
basic rule is that you can disable items when the combo box "owns"

the data, but not when it gets its data from another source. Also, note
that the same rules apply to list boxes.

A little background on VFP's combo and list boxes is useful here. These
controls are incredibly flexible in how they get populated. Two

properties of a combo or list box, RowSourceType and RowSource,
determine where the data comes from. As their names imply, the

value of RowSourceType determines the interpretation of RowSource.
Table 1 shows the list of RowSourceTypes and the corresponding

interpretations of RowSource.

Table 1. Population combo and list boxes—The data in a combo or list box can be
drawn from a variety of places. The RowSourceType and RowSource properties
combine to determine what's included.

RowSourceType RowSource

0-None Should be empty. If anything is listed, it's treated as

if RowSourceType=1.

1-Value Contains a comma-separated list of items to put in

the combo or list. If ColumnCount is greater than 1,
the data is divided into columns.

2-Alias Contains the alias for an open table. ColumnCount

determines the number of listed fields displayed in
the combo or list.

3-SQL
Statement

Contains a query to be executed when the combo or
list is created and each time it's requeried. The

resulting cursor is treated as when
RowSourceType=2.

4-Query Contains the name of a query file (.QPR) to be

executed when the combo or list is created and each
time it's requeried. The resulting cursor is treated as

when RowSourceType=2.

5-Array Contains the name of an array from which the data

is drawn. ColumnCount determines how many

columns of the array are displayed.

6-Fields Contains a comma-separated list of fields from which

the data is drawn. (Include an alias only on the first
field in the list.) ColumnCount determines how many

of the listed fields are displayed. Field names only;
expressions cannot be used here.

7-Files Contains a file specification. Files in the current

directory that match the specification are listed in
the combo or list.

8-Structure Contains the alias for an open table. Field names
from that table populate the combo or list.

9-Popup Contains the name of an existing popup (created

with DEFINE POPUP). The bars from the popup are
listed in the combo or list.

With many of the RowSourceTypes, the data comes from something

outside the control and the combo or list doesn't have control over the
data. However, with RowSourceTypes 0-None, 1-Value and 5-Array,

you can think of the combo or list as owning the data. In those cases,
you can disable individual items.

The mechanism for disabling an item is simple. Precede it with a

backslash ("\"). For example:

RowSourceType = 1
RowSource = "\Men,Barney,Fred,Ricky,\Women,Betty,Lucy,Ethel"

There's one complication. Sometimes, you need a data item that

begins with a single backslash. In that case, double the backslash—the
item will show up enabled with a single backslash.

–Tamar

Positioning items in a listbox

VFP 8/7/6

Q: I have a listbox where the initially selected item is near the middle

of the list. I'd like to have that item appear at the top of the list when
the form opens.

A: This is one of those capabilities that most people seem to have
overlooked. List boxes give you control over the positioning of items

using the TopIndex or TopItemID property. Set either one and the

item you specify is displayed at the top of the list.

How do you know whether to set TopIndex or TopItemID? The two

properties control the same item, but they use two different
numbering mechanisms. Both lists and combos support the two

mechanisms.

The Index mechanism (represented by properties like List, ListIndex,

and TopIndex and methods including AddItem and RemoveItem) is
based on the position of the items in the list. The first item has index

1, the second has index 2, and so forth. Because items can be added
to and removed from the list, the index for a particular item can

change.

The ItemId mechanism (represented by properties like ListItem,

ListItemId and TopItemId and methods including AddListtem and
RemoveListItem) assigns every item in the list a unique ID. That ID

never changes as long as the item remains in the list. When you use

RowSourceType 0 and populate the list manually, you can assign the
ID for a particular item.

In most cases, including setting the top item, it doesn't matter which
mechanism you use to address the list or combo. The major difference

between the two is in the behavior of the AddItem and AddListItem
methods. Briefly, AddItem always adds a new row while AddListItem

lets you add or change data in an existing row as well.

So, if you want to specify which item is at the top of the list based on

its position in the list, set TopIndex. To specify based on the item's
unique ID (which you might have set to the primary key of a record),

use TopItemID.

There is one complication. TopIndex and TopItemID are read-only at

design-time, so you have to set these properties in code. To

complicate matters, the list's Init method is too early—changes to

these properties in Init are ignored.

To my surprise, even the form's Init method is too soon. You have to

wait until at least the form's Activate method. Since you probably want
to set TopIndex or TopItemID only when you first enter the form, that

means you'll need a logical property to ensure that's the case:

* In Form.Activate
IF This.lFirstTime
 This.lstMyList.TopItem = This.lstMyList.Value
 This.lFirstTime = .F.
ENDIF

Finally, for a combo box, TopIndex and TopItemID are read-only at

both design-time and runtime.

–Tamar

